Telegram Group & Telegram Channel
Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение



tg-me.com/ds_interview_lib/609
Create:
Last Update:

Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/609

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA